Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2
نویسندگان
چکیده
Measurements of aerosol properties were made in aged polluted and clean background air masses encountered at the North Norfolk (UK) coastline as part of the TORCH2 field campaign in May 2004. Hygroscopic growth factors (GF) at 90% relative humidity (RH) for D0=27–217 nm particles and size-resolved chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and an Aerodyne aerosol mass spectrometer (Q-AMS), respectively. Both hygroscopic properties and chemical composition showed pronounced variability in time and with particles size. With this data set we could demonstrate that the Zdanovskii-Stokes-Robinson (ZSR) mixing rule combined with chemical composition data from the AMS makes accurate quantitative predictions of the mean GF of mixed atmospheric aerosol particles possible. In doing so it is crucial that chemical composition data are acquired with high resolution in both particle size and time, at least matching the actual variability of particle properties. The closure results indicate an ensemble GF of the organic fraction of ∼1.20±0.10 at 90% water activity. Thus the organics contribute somewhat to hygroscopic growth, particularly at small sizes, however the inorganic salts still dominate. Furthermore it has been found that most likely substantial evaporation losses of NH4NO3 occurred within the HTDMA instrument, exacerbated by a long residence time of ∼1 min. Such an artefact is in agreement with our laboratory experiments and literature data for pure NH4NO3, both showing similar evaporation losses within HTDMAs with residence times of∼1 min. Short residence times and low temperatures are hence recommended for HTDMAs in order to minimise such evaporation artefacts. Correspondence to: M. Gysel ([email protected])
منابع مشابه
Closure between measured and modelled particle hygroscopic growth during TORCH2 implies ammonium nitrate artefact in the HTDMA measurements
متن کامل
Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours
Hygroscopicity (i.e. water vapour affinity) of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafi...
متن کاملReconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany
Aerosol physical, chemical and hygroscopic properties were measured in a range of airmasses during COPS (Convective and Orographically-induced Precipitation Study) ground-based in June and July of 2007 at the Hornisgrinde mountain site in the Black Forest, Southwest Germany. Non-refractory aerosol composition was measured with an Aerosol Mass Spectrometer, simultaneous to hygroscopic growth fac...
متن کاملHygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods
The hygroscopic properties of atmospheric aerosols are highly relevant for the quantification of radiative effects in the atmosphere, but also of interest for the assessment of particle health effects upon inhalation. This article reports measurements of aerosol particle hygroscopicity in the highly polluted urban atmosphere of Beijing, China in January 2005. The meteorological conditions corre...
متن کاملSize-resolved CCN distributions and activation kinetics of aged continental and marine aerosol
We present size-segregated measurements of cloud condensation nucleus (CCN) activity of aged aerosol sampled at Finokalia, Crete, during the Finokalia Aerosol Measurement Experiment of summer 2007 (FAME07). From analysis of the data, hygroscopicity and activation kinetics distributions are derived. The CCN are found to be highly hygroscopic, (expressed by a sizeand timeaveraged hygroscopicity p...
متن کامل